Análise da viabilidade econômica do Sistema de Transporte Coletivo Regional – AMFRI com dados de demanda atualizados para 2021

O Projeto do Sistema de Transporte Coletivo Regional (STCR) visa conectar as 11 cidades pertencentes à costa leste do estado de Santa Catarina (Balneário Camboriú, Balneário Piçarras, Bombinhas, Camboriú, Ilhota, Itajaí, Itapema, Luiz Alves, Navegantes, Penha e Porto Belo), representados pela **Associação dos Municípios da Foz do Rio Itajaí - AMFRI**.

Os principais objetivos do sistema é melhorar a qualidade do serviço de transporte público local através de um sistema integrado de transporte de alcance intermunicipal que reduzirá tempo e custo de viagem; aumentar a acessibilidade a empregos; guiar o aumento da divisão modal dos sistemas de transporte coletivo e não-motorizado, promovendo uma migração modal para modos mais sustentáveis; melhorar a qualidade do ar e reduzir as emissões de gases de efeito estufa (GEE); e contribuir para a expansão da condição socioeconômica local. Com o Projeto, o sistema intermunicipal seria organizado em quatro subsistemas: Central, Norte, Sul e Oeste.

Diante do cenário atual das discussões climáticas na COP 26, e dos compromissos assumidos pelo Banco Mundial em relação a descarbonização do transporte, a AMFRI assumiu o desafio de implementar um sistema de BRT 100% elétrico. Para viabilizar essa inovação, fez-se necessário a revisão dos estudo prévios da demanda de transportes existente e projetada para o futuro STCR e ajustes nos estudos de viabilidade econômico-financeira, reavaliando as estimativa de investimentos necessários na frota e infraestrutura, e definição da política tarifária.

Para tanto, foi realizado uma nova Pesquisa Origem e Destino de transporte representando os fluxos de pessoas as diferentes zonas da área de estudo, a partir de dados móveis de telefones celulares, de modo a representar melhor os padrões de deslocamentos atuais. A partir de uma série de inferências, foi possível atualizar a matriz de viagens da região metropolitana para o ano base de 2019, anterior aos impactos da Covid-19, caracterizando as viagens a partir do modo de transporte utilizado, motivo, horários e volumes.

Com base nesses novos dados, foi desenvolvido um modelo de simulação de quatro etapas, para estimar a (i) projeção de população e empregos, e consequentemente, produção de viagens para os diferentes cenários; (ii) distribuição das viagens na região metropolitana; (iii) divisão modal entre transporte individual, transporte público e modos ativos; e por fim, (iv) alocação de viagens e carregamento no sistema de BRT central, norte, sul e oeste.

Para quantificar o impacto da implantação de uma travessia seca ao longo do rio Itajaí-Acú (que permitiria conectar as cidades centrais de Itajaí e Navegantes) na demanda de passageiros do BRT, o estudo explorou dois cenários de simulação dessa travessia: (1) com o túnel; e (2) sem o túnel, operando com sistema integrado de travessia de passageiros por balsas rápidas. A segunda solução reduziria os investimentos necessários para a primeira fase de operação do STCR, oferecendo uma solução viável sem grandes impactos no tempo de viagem e penalização dos passageiros. Além de não interferir nas atividades portuárias atuais, as balsas rápidas se apresentam a uma alternativa para reduzir os riscos de construção e concessão do túnel, que exigirá estudos detalhados de demanda, engenharia e impactos

socioambientais para estruturação da sua concessão e deve ser implementado numa segunda fase do projeto. Em ambos os cenários se considera um sistema troncoalimentado.

A Figura 1 mostra os resultados para os cenários em diferentes horizontes temporais. As projeções de demanda foram ajustadas com premissas mais conservadoras que o estudo anterior, diante dos impactos da pandemia no transporte público e no cenário macroeconômico brasileiro para os próximos anos.

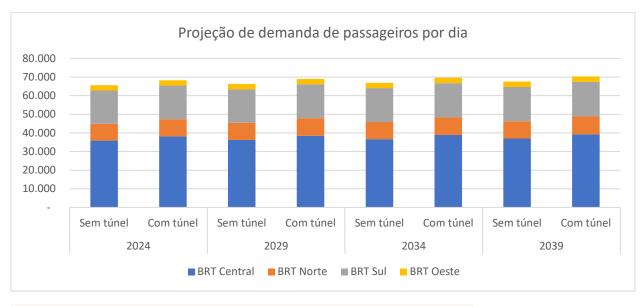


Figura 1 - Cenário de demanda para BRT com e sem túnel

Fonte: Adaptação dos dados apresentados no Estudo de Demanda contratado pela Equipe do Banco Mundial (2021).

O estudo deixa claro que, embora o túnel seja desejável para melhorar a qualidade do serviço e tempo de viagem para os usuários do BRT (e outros veículos que trafegam no local), não é essencial para sua operação. A diferença de demanda de passageiros para o cenário sem o túnel é de 5,8%, com um aumento de tempo de viagem de 10 min.

O carregamento na hora pico de todo sistema é de cerca de 2 mil passageiros, sendo necessário a operação de uma frota de 23 ônibus elétricos articulados (18m) no BRT central e 27 ônibus tipo padron (12m) nos sistemas norte, sul e oeste. Considerando os intervalos mínimos de operação e frota reserva para um sistema de ônibus elétricos, esse número aumenta para um total de 57 veículos no cenário sem o túnel e 60 veículos no cenário com o túnel.

Linha	PAX DIA	Integração	MAX Carreg.	No. de ônibus elétricos	
		BRT - Total	Hora Pico	Sem túnel	Com túnel
BRT Central	37.719	3.146	1.177	26	27
BRT Norte	9.232	1.485	301	10	11
BRT Sul	17.846	1.573	472	17	18
BRT Oeste	2.807	495	113	4	4
Total	67,604	6.700	2.063	57	60

Figura 2 – Frota elétrica necessária

Fonte: Adaptação dos dados apresentados no Estudo de Demanda contratado pela Equipe do Banco Mundial (2021).

A partir dos novos dados de demanda e de frota necessária, foram reavaliadas as estimativas de CAPEX e OPEX da operação, com as seguintes premissas:

i) Considerando a frota 100% elétrica, foi modelado um período de concessão de 15 anos, que corresponde a vida útil dos veículos. Assim, o investimento em infraestrutura e material rodante está concentrado no ano zero, sem necessidade de renovação ao longo do período de concessão. Há apenas uma substituição da bateria dos ônibus no 8º. ano de concessão

A Figura 3 apresenta os valores unitários de investimento para o material rodante.

Figura 3 – Valores unitários de CAPEX – Material rodante

Investimentos		Valores unitários (BRL)		
		Padron	Α	rticulado
Ônibus elétricos (chassis e carroceria)	R\$	1.647.000,00	R\$ 2	2.780.000,00
Baterias	R\$	550.000,00	R\$	550.000,00
Carregadores	R\$	8.500,00	R\$	14.500,00
Barcas	R\$	40.000.000,00		

Fonte: Banco Mundial, com dados fornecidos por fabricantes (2021).

- ii) Os valores de Capex incluem:
 - a. os ônibus elétricos, troca de baterias e infraestrutura de recarga dos quatro sistemas de BRT;
 - b. terminais e paradas dos sistemas norte, sul e oeste;
 - c. infraestrutura viária do sistema de BRT central;
 - d. balsas rápidas para a travessia
 - e. infraestrutura operacional
 - f. investimentos para remediação dos impactos ambientais
- iii) Não inclui o CAPEX do restante da infraestrutura viária dos sistemas sul, norte e oeste, já que esses sistemas, com de demanda significativamente menor, seriam apenas construídos a partir de 2032.
- iv) Para o cenário sem o túnel, foi considerado a operação das barcas rápidas acrescentado um valor residual de 40% ao final dos 15 anos de concessão. Para o cenário com o túnel, as barcas seriam utilizadas para a primeira fase do projeto (7 anos) e operariam até 2031 com valor residual de 70%.
- v) O modelo resultou em uma tarifa pública integral de R\$ 5,00 e um desconto de 50% para tarifa de integração entre sistemas de BRT, de R\$ 2,50. De acordo com os resultados do estudo, cerca de 10% das viagens são integradas.
- vi) O CAPEX a preços constantes de 2021 e dólar a R\$5,48 de 9 de novembro de 2021.

Em função das premissas acima explicadas, segue o resultado do CAPEX recalculado:

Figura 3 – Valores unitários de CAPEX – Material rodante

Estimativas de CAPEX para o projeto STCR (US\$ milhares, preços constantes de 2021)					
Componente	Valor (USD)				
CAPEX Infraestrutura do BRT Sistema Central	51,500				
CAPEX Material Rodante (2024)	30,500				
CAPEX Substituição Baterias Material Rodante (2031)	9,500				
CAPEX Balsa	15,000				
CAPEX Paradas e Terminais (Sistemas Sul, Norte e Oeste)	3,500				
CAPEX Infraestrutura Operacional	6,800				
CAPEX Ambiental	2,800				
Total STCR	119.600				

¹ Estimativas não incluem os custos de investimento para os corredores de ônibus nos sistemas Sul, Norte e Oeste, planejados para a segunda etapa de expansão do STCR.

A análise financeira estimou a viabilidade do projeto em diversos cenários, tendo em base os novos resultados do total do CAPEX e OPEX. Foram estimados um cenário com a conclusão da obra do túnel no sétimo ano da operação do BRT e um cenário sem túnel durante o horizonte de análise de 15 anos.

Os resultados revelam que o projeto **tem viabilidade financeira em ambos os casos** após contribuição do setor público, o que poderia ocorrer em forma de aporte. Este resultado já era esperado e está alinhado com outros empreendimentos de *BRT* com investimentos iniciais consideráveis, haja vista que receitas tarifarias raramente compensam a totalidade dos custos de capital em grandes projetos de transporte público. A parcela de investimento do setor público necessária para tornar o projeto viável seria de US\$ 1,2 milhões no cenário com túnel e US\$8,6 milhões no cenário sem túnel, resultando em uma TIR nominal de 11,6% (TIR constante de 8,3%), calculada após considerar o aporte público.

² Desapropriações necessárias ao BRT mas que estão diretamente associadas a outros projetos urbanos, previstos para serem conduzidos de forma independente, foram estimadas em R\$543,9 milhões.

³ Valores a preço de 2021 (valores em preços de 2020 foram corrigidos utilizando o INPC). Taxa de câmbio do Banco Central de R\$5.48.